/**
* LittleJS Utility Classes and Functions
* - General purpose math library
* - Vector2 - fast, simple, easy 2D vector class
* - Color - holds a rgba color with some math functions
* - Timer - tracks time automatically
* - RandomGenerator - seeded random number generator
* @namespace Utilities
*/
'use strict';
/** The value of PI
* @type {number}
* @default Math.PI
* @memberof Utilities */
const PI = Math.PI;
/** Returns absolute value of value passed in
* @param {number} value
* @return {number}
* @memberof Utilities */
const abs = Math.abs;
/** Returns floored value of value passed in
* @param {number} value
* @return {number}
* @memberof Utilities */
const floor = Math.floor;
/** Returns ceiled value of value passed in
* @param {number} value
* @return {number}
* @memberof Utilities */
const ceil = Math.ceil;
/** Returns rounded value passed in
* @param {number} value
* @return {number}
* @memberof Utilities */
const round = Math.round;
/** Returns lowest value passed in
* @param {...number} values
* @return {number}
* @memberof Utilities */
const min = Math.min;
/** Returns highest value passed in
* @param {...number} values
* @return {number}
* @memberof Utilities */
const max = Math.max;
/** Returns the sign of value passed in
* @param {number} value
* @return {number}
* @memberof Utilities */
const sign = Math.sign;
/** Returns hypotenuse of values passed in
* @param {...number} values
* @return {number}
* @memberof Utilities */
const hypot = Math.hypot;
/** Returns log2 of value passed in
* @param {number} value
* @return {number}
* @memberof Utilities */
const log2 = Math.log2;
/** Returns sin of value passed in
* @param {number} value
* @return {number}
* @memberof Utilities */
const sin = Math.sin;
/** Returns cos of value passed in
* @param {number} value
* @return {number}
* @memberof Utilities */
const cos = Math.cos;
/** Returns tan of value passed in
* @param {number} value
* @return {number}
* @memberof Utilities */
const tan = Math.tan;
/** Returns atan2 of values passed in
* @param {number} y
* @param {number} x
* @return {number}
* @memberof Utilities */
const atan2 = Math.atan2;
/** Returns first parm modulo the second param, but adjusted so negative numbers work as expected
* @param {number} dividend
* @param {number} [divisor]
* @return {number}
* @memberof Utilities */
function mod(dividend, divisor=1) { return ((dividend % divisor) + divisor) % divisor; }
/** Clamps the value between max and min
* @param {number} value
* @param {number} [min]
* @param {number} [max]
* @return {number}
* @memberof Utilities */
function clamp(value, min=0, max=1) { return value < min ? min : value > max ? max : value; }
/** Returns what percentage the value is between valueA and valueB
* @param {number} value
* @param {number} valueA
* @param {number} valueB
* @return {number}
* @memberof Utilities */
function percent(value, valueA, valueB)
{ return (valueB-=valueA) ? clamp((value-valueA)/valueB) : 0; }
/** Linearly interpolates between values passed in using percent
* @param {number} valueA
* @param {number} valueB
* @param {number} percent
* @return {number}
* @memberof Utilities */
function lerp(valueA, valueB, percent)
{
if (valueA >= 0 && valueA <= 1 && ((valueB < 0 || valueB > 1) && (percent < 0 || percent > 1)))
console.warn('lerp() parameter order changed! use lerp(start, end, p)');
return valueA + clamp(percent) * (valueB-valueA);
}
/** Gets percent between percentA and percentB and linearly interpolates between lerpA and lerpB
* A shortcut for lerp(lerpA, lerpB, percent(value, percentA, percentB))
* @param {number} value
* @param {number} percentA
* @param {number} percentB
* @param {number} lerpA
* @param {number} lerpB
* @return {number}
* @memberof Utilities */
function percentLerp(value, percentA, percentB, lerpA, lerpB)
{ return lerp(lerpA, lerpB, percent(value, percentA, percentB)); }
/** Returns signed wrapped distance between the two values passed in
* @param {number} valueA
* @param {number} valueB
* @param {number} [wrapSize]
* @return {number}
* @memberof Utilities */
function distanceWrap(valueA, valueB, wrapSize=1)
{ const d = (valueA - valueB) % wrapSize; return d*2 % wrapSize - d; }
/** Linearly interpolates between values passed in with wrapping
* @param {number} valueA
* @param {number} valueB
* @param {number} percent
* @param {number} [wrapSize]
* @return {number}
* @memberof Utilities */
function lerpWrap(valueA, valueB, percent, wrapSize=1)
{
if (valueA >= 0 && valueA <= 1 && ((valueB < 0 || valueB > 1) && (percent < 0 || percent > 1)))
console.warn('lerpWrap() parameter order changed! use lerpWrap(start, end, p)');
return valueA + clamp(percent) * distanceWrap(valueB, valueA, wrapSize);
}
/** Returns signed wrapped distance between the two angles passed in
* @param {number} angleA
* @param {number} angleB
* @return {number}
* @memberof Utilities */
function distanceAngle(angleA, angleB) { return distanceWrap(angleA, angleB, 2*PI); }
/** Linearly interpolates between the angles passed in with wrapping
* @param {number} angleA
* @param {number} angleB
* @param {number} percent
* @return {number}
* @memberof Utilities */
function lerpAngle(angleA, angleB, percent) { return lerpWrap(angleA, angleB, percent, 2*PI); }
/** Applies smoothstep function to the percentage value
* @param {number} percent
* @return {number}
* @memberof Utilities */
function smoothStep(percent) { return percent * percent * (3 - 2 * percent); }
/** Checks if the value passed in is a power of two
* @param {number} value
* @return {boolean}
* @memberof Utilities */
function isPowerOfTwo(value) { return !(value & (value - 1)); }
/** Returns the nearest power of two not less than the value
* @param {number} value
* @return {number}
* @memberof Utilities */
function nearestPowerOfTwo(value) { return 2**ceil(log2(value)); }
/** Returns true if two axis aligned bounding boxes are overlapping
* this can be used for simple collision detection between objects
* @param {Vector2} posA - Center of box A
* @param {Vector2} sizeA - Size of box A
* @param {Vector2} posB - Center of box B
* @param {Vector2} [sizeB=(0,0)] - Size of box B, uses a point if undefined
* @return {boolean} - True if overlapping
* @memberof Utilities */
function isOverlapping(posA, sizeA, posB, sizeB=vec2())
{
const dx = (posA.x - posB.x)*2;
const dy = (posA.y - posB.y)*2;
const sx = sizeA.x + sizeB.x;
const sy = sizeA.y + sizeB.y;
return dx >= -sx && dx < sx && dy >= -sy && dy < sy;
}
/** Returns true if a line segment is intersecting an axis aligned box
* @param {Vector2} start - Start of raycast
* @param {Vector2} end - End of raycast
* @param {Vector2} pos - Center of box
* @param {Vector2} size - Size of box
* @return {boolean} - True if intersecting
* @memberof Utilities */
function isIntersecting(start, end, pos, size)
{
// Liang-Barsky algorithm
const boxMin = pos.subtract(size.scale(.5));
const boxMax = boxMin.add(size);
const delta = end.subtract(start);
const a = start.subtract(boxMin);
const b = start.subtract(boxMax);
const p = [-delta.x, delta.x, -delta.y, delta.y];
const q = [a.x, -b.x, a.y, -b.y];
let tMin = 0, tMax = 1;
for (let i = 4; i--;)
{
if (p[i])
{
const t = q[i] / p[i];
if (p[i] < 0)
{
if (t > tMax) return false;
tMin = max(t, tMin);
}
else
{
if (t < tMin) return false;
tMax = min(t, tMax);
}
}
else if (q[i] < 0)
return false;
}
return true;
}
/** Returns an oscillating wave between 0 and amplitude with frequency of 1 Hz by default
* @param {number} [frequency] - Frequency of the wave in Hz
* @param {number} [amplitude] - Amplitude (max height) of the wave
* @param {number} [t=time] - Value to use for time of the wave
* @param {number} [offset] - Value to use for time offset of the wave
* @return {number} - Value waving between 0 and amplitude
* @memberof Utilities */
function wave(frequency=1, amplitude=1, t=time, offset=0)
{ return amplitude/2 * (1 - cos(offset + t*frequency*2*PI)); }
/** Formats seconds to mm:ss style for display purposes
* @param {number} t - time in seconds
* @return {string}
* @memberof Utilities */
function formatTime(t)
{
const sign = t < 0 ? '-' : '';
t = abs(t)|0;
return sign + (t/60|0) + ':' + (t%60<10?'0':'') + t%60;
}
/** Fetches a JSON file from a URL and returns the parsed JSON object. Must be used with await!
* @param {string} url - URL of JSON file
* @return {Promise<object>}
* @memberof Utilities */
async function fetchJSON(url)
{
const response = await fetch(url);
if (!response.ok)
throw new Error(`Failed to fetch JSON from ${url}: ${response.status} ${response.statusText}`);
return response.json();
}
/**
* Check if object is a valid number, not NaN or undefined, but it may be infinite
* @param {any} n
* @return {boolean}
* @memberof Utilities */
function isNumber(n) { return typeof n === 'number' && !isNaN(n); }
/**
* Check if object is a valid string or can be converted to one
* @param {any} s
* @return {boolean}
* @memberof Utilities */
function isString(s) { return s !== undefined && s !== null && typeof s.toString() === 'string'; }
/**
* Check if object is an array
* @param {any} a
* @return {boolean}
* @memberof Utilities */
function isArray(a) { return Array.isArray(a); }
/**
* @callback LineTestFunction - Checks if a position is colliding
* @param {Vector2} pos
* @memberof Draw
*/
/**
* Casts a ray and returns position of the first collision found, or undefined if none are found
* @param {Vector2} posStart
* @param {Vector2} posEnd
* @param {LineTestFunction} testFunction - Check if colliding
* @param {Vector2} [normal] - Optional vector to store the normal
* @return {Vector2|undefined} - Position of the collision or undefined if none found
* @memberof Utilities */
function lineTest(posStart, posEnd, testFunction, normal)
{
ASSERT(isVector2(posStart), 'posStart must be a vec2');
ASSERT(isVector2(posEnd), 'posEnd must be a vec2');
ASSERT(typeof testFunction === 'function', 'testFunction must be a function');
ASSERT(!normal || isVector2(normal), 'normal must be a vec2');
// get ray direction and length
const dx = posEnd.x - posStart.x;
const dy = posEnd.y - posStart.y;
const totalLength = hypot(dx, dy);
if (!totalLength)
return;
// current integer cell we are in
const pos = posStart.floor();
// normalize ray direction
const dirX = dx / totalLength;
const dirY = dy / totalLength;
// step direction in grid
const stepX = sign(dirX);
const stepY = sign(dirY);
// distance along the ray to cross one full cell in X or Y
const tDeltaX = dirX ? abs(1 / dirX) : Infinity;
const tDeltaY = dirY ? abs(1 / dirY) : Infinity;
// distance along the ray from start to the first grid boundary
const nextGridX = stepX > 0 ? pos.x + 1 : pos.x;
const nextGridY = stepY > 0 ? pos.y + 1 : pos.y;
const tMaxX = dirX ? (nextGridX - posStart.x) / dirX : Infinity;
const tMaxY = dirY ? (nextGridY - posStart.y) / dirY : Infinity;
// use line drawing algorithm to test for collisions
let t = 0, tX = tMaxX, tY = tMaxY, wasX = tDeltaX < tDeltaY;
while (t < totalLength)
{
if (testFunction(pos))
{
// set hit point
const hitPos = vec2(posStart.x + dirX*t, posStart.y + dirY*t);
// move inside of tile if on positive edge
const e = 1e-9;
if (wasX)
{
if (stepX < 0)
hitPos.x -= e;
}
if (stepY < 0)
hitPos.y -= e;
// set normal
if (normal)
wasX ? normal.set(-stepX,0) : normal.set(0,-stepY);
return hitPos;
}
// advance to the next grid boundary
if (wasX = tX < tY)
{
pos.x += stepX;
t = tX;
tX += tDeltaX;
}
else
{
pos.y += stepY;
t = tY;
tY += tDeltaY;
}
}
}
///////////////////////////////////////////////////////////////////////////////
/** Random global functions
* @namespace Random */
/** Returns a random value between the two values passed in
* @param {number} [valueA]
* @param {number} [valueB]
* @return {number}
* @memberof Random */
function rand(valueA=1, valueB=0) { return valueB + Math.random() * (valueA-valueB); }
/** Returns a floored random value between the two values passed in
* The upper bound is exclusive. (If 2 is passed in, result will be 0 or 1)
* @param {number} valueA
* @param {number} [valueB]
* @return {number}
* @memberof Random */
function randInt(valueA, valueB=0) { return floor(rand(valueA,valueB)); }
/** Randomly returns true or false given the chance of true passed in
* @param {number} [chance]
* @return {boolean}
* @memberof Random */
function randBool(chance=.5) { return rand() < chance; }
/** Randomly returns either -1 or 1
* @return {number}
* @memberof Random */
function randSign() { return randInt(2) * 2 - 1; }
/** Returns a random Vector2 with the passed in length
* @param {number} [length]
* @return {Vector2}
* @memberof Random */
function randVec2(length=1) { return new Vector2().setAngle(rand(2*PI), length); }
/** Returns a random Vector2 within a circular shape
* @param {number} [radius]
* @param {number} [minRadius]
* @return {Vector2}
* @memberof Random */
function randInCircle(radius=1, minRadius=0)
{ return radius > 0 ? randVec2(radius * rand(minRadius / radius, 1)**.5) : new Vector2; }
/** Returns a random color between the two passed in colors, combine components if linear
* @param {Color} [colorA=(1,1,1,1)]
* @param {Color} [colorB=(0,0,0,1)]
* @param {boolean} [linear]
* @return {Color}
* @memberof Random */
function randColor(colorA=new Color, colorB=new Color(0,0,0,1), linear=false)
{
return linear ? colorA.lerp(colorB, rand()) :
new Color(rand(colorA.r,colorB.r), rand(colorA.g,colorB.g), rand(colorA.b,colorB.b), rand(colorA.a,colorB.a));
}
///////////////////////////////////////////////////////////////////////////////
/**
* Seeded random number generator
* - Can be used to create a deterministic random number sequence
* @memberof Engine
* @example
* let r = new RandomGenerator(123); // random number generator with seed 123
* let a = r.float(); // random value between 0 and 1
* let b = r.int(10); // random integer between 0 and 9
* r.seed = 123; // reset the seed
* let c = r.float(); // the same value as a
*/
class RandomGenerator
{
/** Create a random number generator with the seed passed in
* @param {number} [seed] - Starting seed or engine default seed */
constructor(seed = 123456789)
{
/** @property {number} - random seed */
this.seed = seed;
}
/** Returns a seeded random value between the two values passed in
* @param {number} [valueA]
* @param {number} [valueB]
* @return {number} */
float(valueA=1, valueB=0)
{
// xorshift algorithm
this.seed ^= this.seed << 13;
this.seed ^= this.seed >>> 17;
this.seed ^= this.seed << 5;
return valueB + (valueA - valueB) * ((this.seed >>> 0) / 2**32);
}
/** Returns a floored seeded random value the two values passed in
* @param {number} valueA
* @param {number} [valueB]
* @return {number} */
int(valueA, valueB=0) { return floor(this.float(valueA, valueB)); }
/** Randomly returns true or false given the chance of true passed in
* @param {number} [chance]
* @return {boolean} */
bool(chance=.5) { return this.float() < chance; }
/** Randomly returns either -1 or 1 deterministically
* @return {number} */
sign() { return this.float() > .5 ? 1 : -1; }
/** Returns a seeded random value between the two values passed in with a random sign
* @param {number} [valueA]
* @param {number} [valueB]
* @return {number} */
floatSign(valueA=1, valueB=0) { return this.float(valueA, valueB) * this.sign(); }
/** Returns a random angle between -PI and PI
* @return {number} */
angle() { return this.float(-PI, PI); }
/** Returns a seeded vec2 with size between the two values passed in
* @param {number} valueA
* @param {number} [valueB]
* @return {Vector2} */
vec2(valueA=1, valueB=0)
{ return vec2(this.float(valueA, valueB), this.float(valueA, valueB)); }
/** Returns a random color between the two passed in colors, combine components if linear
* @param {Color} [colorA=(1,1,1,1)]
* @param {Color} [colorB=(0,0,0,1)]
* @param {boolean} [linear]
* @return {Color} */
randColor(colorA=new Color, colorB=new Color(0,0,0,1), linear=false)
{
return linear ? colorA.lerp(colorB, this.float()) :
new Color(
this.float(colorA.r,colorB.r),
this.float(colorA.g,colorB.g),
this.float(colorA.b,colorB.b),
this.float(colorA.a,colorB.a));
}
/** Returns a new color that has each component randomly adjusted
* @param {Color} color
* @param {number} [amount]
* @param {number} [alphaAmount]
* @return {Color} */
mutateColor(color, amount=.05, alphaAmount=0)
{
ASSERT_NUMBER_VALID(amount);
ASSERT_NUMBER_VALID(alphaAmount);
return new Color
(
color.r + this.float(amount, -amount),
color.g + this.float(amount, -amount),
color.b + this.float(amount, -amount),
color.a + this.float(alphaAmount, -alphaAmount)
).clamp();
}
}
///////////////////////////////////////////////////////////////////////////////
/**
* Create a 2d vector, can take 1 or 2 scalar values
* @param {number} [x]
* @param {number} [y] - if y is undefined, x is used for both
* @return {Vector2}
* @example
* let a = vec2(0, 1); // vector with coordinates (0, 1)
* a = vec2(5); // set a to (5, 5)
* b = vec2(); // set b to (0, 0)
* @memberof Utilities */
function vec2(x=0, y) { return new Vector2(x, y === undefined ? x : y); }
/**
* Check if object is a valid Vector2
* @param {any} v
* @return {boolean}
* @memberof Utilities */
function isVector2(v) { return v instanceof Vector2 && v.isValid(); }
// vector2 asserts
function ASSERT_VECTOR2_VALID(v) { ASSERT(isVector2(v), 'Vector2 is invalid.', v); }
function ASSERT_NUMBER_VALID(n) { ASSERT(isNumber(n), 'Number is invalid.', n); }
function ASSERT_VECTOR2_NORMAL(v)
{
ASSERT_VECTOR2_VALID(v);
ASSERT(abs(v.lengthSquared()-1) < .01, 'Vector2 is not normal.', v);
}
/**
* 2D Vector object with vector math library
* - Functions do not change this so they can be chained together
* @memberof Engine
* @example
* let a = new Vector2(2, 3); // vector with coordinates (2, 3)
* let b = new Vector2; // vector with coordinates (0, 0)
* let c = vec2(4, 2); // use the vec2 function to make a Vector2
* let d = a.add(b).scale(5); // operators can be chained
*/
class Vector2
{
/** Create a 2D vector with the x and y passed in, can also be created with vec2()
* @param {number} [x] - X axis location
* @param {number} [y] - Y axis location */
constructor(x=0, y=0)
{
/** @property {number} - X axis location */
this.x = x;
/** @property {number} - Y axis location */
this.y = y;
ASSERT(this.isValid(), 'Constructed Vector2 is invalid.', this);
}
/** Sets values of this vector and returns self
* @param {number} [x] - X axis location
* @param {number} [y] - Y axis location
* @return {Vector2} */
set(x=0, y=0)
{
this.x = x;
this.y = y;
ASSERT_VECTOR2_VALID(this);
return this;
}
/** Sets this vector from another vector and returns self
* @param {Vector2} v - other vector
* @return {Vector2} */
setFrom(v) { return this.set(v.x, v.y); }
/** Returns a new vector that is a copy of this
* @return {Vector2} */
copy() { return new Vector2(this.x, this.y); }
/** Returns a copy of this vector plus the vector passed in
* @param {Vector2} v - other vector
* @return {Vector2} */
add(v) { return new Vector2(this.x + v.x, this.y + v.y);}
/** Returns a copy of this vector minus the vector passed in
* @param {Vector2} v - other vector
* @return {Vector2} */
subtract(v) { return new Vector2(this.x - v.x, this.y - v.y); }
/** Returns a copy of this vector times the vector passed in
* @param {Vector2} v - other vector
* @return {Vector2} */
multiply(v) { return new Vector2(this.x * v.x, this.y * v.y); }
/** Returns a copy of this vector divided by the vector passed in
* @param {Vector2} v - other vector
* @return {Vector2} */
divide(v) { return new Vector2(this.x / v.x, this.y / v.y); }
/** Returns a copy of this vector scaled by the vector passed in
* @param {number} s - scale
* @return {Vector2} */
scale(s) { return new Vector2(this.x * s, this.y * s); }
/** Returns the length of this vector
* @return {number} */
length() { return this.lengthSquared()**.5; }
/** Returns the length of this vector squared
* @return {number} */
lengthSquared() { return this.x**2 + this.y**2; }
/** Returns the distance from this vector to vector passed in
* @param {Vector2} v - other vector
* @return {number} */
distance(v) { return this.distanceSquared(v)**.5; }
/** Returns the distance squared from this vector to vector passed in
* @param {Vector2} v - other vector
* @return {number} */
distanceSquared(v) { return (this.x - v.x)**2 + (this.y - v.y)**2; }
/** Returns a new vector in same direction as this one with the length passed in
* @param {number} [length]
* @return {Vector2} */
normalize(length=1)
{
const l = this.length();
return l ? this.scale(length/l) : new Vector2(0, length);
}
/** Returns a new vector clamped to length passed in
* @param {number} [length]
* @return {Vector2} */
clampLength(length=1)
{
const l = this.length();
return l > length ? this.scale(length/l) : this.copy();
}
/** Returns the dot product of this and the vector passed in
* @param {Vector2} v - other vector
* @return {number} */
dot(v) { return this.x*v.x + this.y*v.y; }
/** Returns the cross product of this and the vector passed in
* @param {Vector2} v - other vector
* @return {number} */
cross(v) { return this.x*v.y - this.y*v.x; }
/** Returns a copy this vector reflected by the surface normal
* @param {Vector2} normal - surface normal (should be normalized)
* @param {number} restitution - how much to bounce, 1 is perfect bounce, 0 is no bounce
* @return {Vector2} */
reflect(normal, restitution=1)
{ return this.subtract(normal.scale((1+restitution)*this.dot(normal))); }
/** Returns the clockwise angle of this vector, up is angle 0
* @return {number} */
angle() { return atan2(this.x, this.y); }
/** Sets this vector with clockwise angle and length passed in
* @param {number} [angle]
* @param {number} [length]
* @return {Vector2} */
setAngle(angle=0, length=1)
{
ASSERT_NUMBER_VALID(angle);
ASSERT_NUMBER_VALID(length);
this.x = length*sin(angle);
this.y = length*cos(angle);
return this;
}
/** Returns copy of this vector rotated by the clockwise angle passed in
* @param {number} angle
* @return {Vector2} */
rotate(angle)
{
ASSERT_NUMBER_VALID(angle);
const c = cos(-angle), s = sin(-angle);
return new Vector2(this.x*c - this.y*s, this.x*s + this.y*c);
}
/** Sets this this vector to point in the specified integer direction (0-3), corresponding to multiples of 90 degree rotation
* @param {number} [direction]
* @param {number} [length]
* @return {Vector2} */
setDirection(direction, length=1)
{
ASSERT_NUMBER_VALID(direction);
ASSERT_NUMBER_VALID(length);
direction = mod(direction, 4);
ASSERT(direction===0 || direction===1 || direction===2 || direction===3,
'Vector2.setDirection() direction must be an integer between 0 and 3.');
this.x = direction%2 ? direction-1 ? -length : length : 0;
this.y = direction%2 ? 0 : direction ? -length : length;
return this;
}
/** Returns the integer direction of this vector, corresponding to multiples of 90 degree rotation (0-3)
* @return {number} */
direction()
{ return abs(this.x) > abs(this.y) ? this.x < 0 ? 3 : 1 : this.y < 0 ? 2 : 0; }
/** Returns a copy of this vector with absolute values
* @return {Vector2} */
abs() { return new Vector2(abs(this.x), abs(this.y)); }
/** Returns a copy of this vector with each axis floored
* @return {Vector2} */
floor() { return new Vector2(floor(this.x), floor(this.y)); }
/** Returns new vec2 with modded values
* @param {number} [divisor]
* @return {Vector2} */
mod(divisor=1)
{ return new Vector2(mod(this.x, divisor), mod(this.y, divisor)); }
/** Returns the area this vector covers as a rectangle
* @return {number} */
area() { return abs(this.x * this.y); }
/** Returns true if this vector is (0,0)
* @return {boolean} */
isZero() { return !this.x && !this.y; }
/** Returns a new vector that is p percent between this and the vector passed in
* @param {Vector2} v - other vector
* @param {number} percent
* @return {Vector2} */
lerp(v, percent)
{
ASSERT_VECTOR2_VALID(v);
ASSERT_NUMBER_VALID(percent);
const p = clamp(percent);
return new Vector2(v.x*p + this.x*(1-p), v.y*p + this.y*(1-p));
}
/** Returns true if this vector is within the bounds of an array size passed in
* @param {Vector2} arraySize
* @return {boolean} */
arrayCheck(arraySize)
{ return this.x >= 0 && this.y >= 0 && this.x < arraySize.x && this.y < arraySize.y; }
/** Returns this vector expressed as a string
* @param {number} digits - precision to display
* @return {string} */
toString(digits=3)
{
ASSERT_NUMBER_VALID(digits);
if (this.isValid())
return `(${(this.x<0?'':' ') + this.x.toFixed(digits)},${(this.y<0?'':' ') + this.y.toFixed(digits)} )`;
else
return `(${this.x}, ${this.y})`;
}
/** Checks if this is a valid vector
* @return {boolean} */
isValid() { return isNumber(this.x) && isNumber(this.y); }
}
///////////////////////////////////////////////////////////////////////////////
/**
* Create a color object with RGBA values, white by default
* @param {number} [r=1] - red
* @param {number} [g=1] - green
* @param {number} [b=1] - blue
* @param {number} [a=1] - alpha
* @return {Color}
* @memberof Utilities
*/
function rgb(r, g, b, a) { return new Color(r, g, b, a); }
/**
* Create a color object with HSLA values, white by default
* @param {number} [h=0] - hue
* @param {number} [s=0] - saturation
* @param {number} [l=1] - lightness
* @param {number} [a=1] - alpha
* @return {Color}
* @memberof Utilities */
function hsl(h, s, l, a) { return new Color().setHSLA(h, s, l, a); }
/**
* Check if object is a valid Color
* @param {any} c
* @return {boolean}
* @memberof Utilities */
function isColor(c) { return c instanceof Color && c.isValid(); }
// color asserts
function ASSERT_COLOR_VALID(c) { ASSERT(isColor(c), 'Color is invalid.', c); }
/**
* Color object (red, green, blue, alpha) with some helpful functions
* @memberof Engine
* @example
* let a = new Color; // white
* let b = new Color(1, 0, 0); // red
* let c = new Color(0, 0, 0, 0); // transparent black
* let d = rgb(0, 0, 1); // blue using rgb color
* let e = hsl(.3, 1, .5); // green using hsl color
*/
class Color
{
/** Create a color with the rgba components passed in, white by default
* @param {number} [r] - red
* @param {number} [g] - green
* @param {number} [b] - blue
* @param {number} [a] - alpha*/
constructor(r=1, g=1, b=1, a=1)
{
/** @property {number} - Red */
this.r = r;
/** @property {number} - Green */
this.g = g;
/** @property {number} - Blue */
this.b = b;
/** @property {number} - Alpha */
this.a = a;
ASSERT(this.isValid(), 'Constructed Color is invalid.', this);
}
/** Sets values of this color and returns self
* @param {number} [r] - red
* @param {number} [g] - green
* @param {number} [b] - blue
* @param {number} [a] - alpha
* @return {Color} */
set(r=1, g=1, b=1, a=1)
{
this.r = r;
this.g = g;
this.b = b;
this.a = a;
ASSERT_COLOR_VALID(this);
return this;
}
/** Sets this color from another color and returns self
* @param {Color} c - other color
* @return {Color} */
setFrom(c) { return this.set(c.r, c.g, c.b, c.a); }
/** Returns a new color that is a copy of this
* @return {Color} */
copy() { return new Color(this.r, this.g, this.b, this.a); }
/** Returns a copy of this color plus the color passed in
* @param {Color} c - other color
* @return {Color} */
add(c) { return new Color(this.r+c.r, this.g+c.g, this.b+c.b, this.a+c.a); }
/** Returns a copy of this color minus the color passed in
* @param {Color} c - other color
* @return {Color} */
subtract(c) { return new Color(this.r-c.r, this.g-c.g, this.b-c.b, this.a-c.a); }
/** Returns a copy of this color times the color passed in
* @param {Color} c - other color
* @return {Color} */
multiply(c) { return new Color(this.r*c.r, this.g*c.g, this.b*c.b, this.a*c.a); }
/** Returns a copy of this color divided by the color passed in
* @param {Color} c - other color
* @return {Color} */
divide(c) { return new Color(this.r/c.r, this.g/c.g, this.b/c.b, this.a/c.a); }
/** Returns a copy of this color scaled by the value passed in, alpha can be scaled separately
* @param {number} scale
* @param {number} [alphaScale=scale]
* @return {Color} */
scale(scale, alphaScale=scale)
{ return new Color(this.r*scale, this.g*scale, this.b*scale, this.a*alphaScale); }
/** Returns a copy of this color clamped to the valid range between 0 and 1
* @return {Color} */
clamp() { return new Color(clamp(this.r), clamp(this.g), clamp(this.b), clamp(this.a)); }
/** Returns a new color that is p percent between this and the color passed in
* @param {Color} c - other color
* @param {number} percent
* @return {Color} */
lerp(c, percent)
{
ASSERT_COLOR_VALID(c);
ASSERT_NUMBER_VALID(percent);
const p = clamp(percent);
return new Color(
c.r*p + this.r*(1-p),
c.g*p + this.g*(1-p),
c.b*p + this.b*(1-p),
c.a*p + this.a*(1-p));
}
/** Sets this color given a hue, saturation, lightness, and alpha
* @param {number} [h] - hue
* @param {number} [s] - saturation
* @param {number} [l] - lightness
* @param {number} [a] - alpha
* @return {Color} */
setHSLA(h=0, s=0, l=1, a=1)
{
h = mod(h,1);
s = clamp(s);
l = clamp(l);
const q = l < .5 ? l*(1+s) : l+s-l*s, p = 2*l-q,
f = (p, q, t)=>
(t = mod(t,1))*6 < 1 ? p+(q-p)*6*t :
t*2 < 1 ? q :
t*3 < 2 ? p+(q-p)*(4-t*6) : p;
this.r = f(p, q, h + 1/3);
this.g = f(p, q, h);
this.b = f(p, q, h - 1/3);
this.a = a;
ASSERT_COLOR_VALID(this);
return this;
}
/** Returns this color expressed in hsla format
* @return {Array<number>} */
HSLA()
{
const r = clamp(this.r);
const g = clamp(this.g);
const b = clamp(this.b);
const a = clamp(this.a);
const maxC = max(r, g, b);
const minC = min(r, g, b);
const l = (maxC + minC) / 2;
let h = 0, s = 0;
if (maxC !== minC)
{
let d = maxC - minC;
s = l > .5 ? d / (2 - maxC - minC) : d / (maxC + minC);
if (r === maxC)
h = (g - b) / d + (g < b ? 6 : 0);
else if (g === maxC)
h = (b - r) / d + 2;
else if (b === maxC)
h = (r - g) / d + 4;
}
return [h / 6, s, l, a];
}
/** Returns a new color that has each component randomly adjusted
* @param {number} [amount]
* @param {number} [alphaAmount]
* @return {Color} */
mutate(amount=.05, alphaAmount=0)
{
ASSERT_NUMBER_VALID(amount);
ASSERT_NUMBER_VALID(alphaAmount);
return new Color
(
this.r + rand(amount, -amount),
this.g + rand(amount, -amount),
this.b + rand(amount, -amount),
this.a + rand(alphaAmount, -alphaAmount)
).clamp();
}
/** Returns this color expressed as a hex color code
* @param {boolean} [useAlpha] - if alpha should be included in result
* @return {string} */
toString(useAlpha = true)
{
if (debug && !this.isValid())
return `#000`;
const toHex = (c)=> ((c=clamp(c)*255|0)<16 ? '0' : '') + c.toString(16);
return '#' + toHex(this.r) + toHex(this.g) + toHex(this.b) + (useAlpha ? toHex(this.a) : '');
}
/** Set this color from a hex code
* @param {string} hex - html hex code
* @return {Color} */
setHex(hex)
{
ASSERT(isString(hex), 'Color hex code must be a string');
ASSERT(hex[0] === '#', 'Color hex code must start with #');
ASSERT([4,5,7,9].includes(hex.length), 'Invalid hex');
if (hex.length < 6)
{
const fromHex = (c)=> clamp(parseInt(hex[c],16)/15);
this.r = fromHex(1);
this.g = fromHex(2);
this.b = fromHex(3);
this.a = hex.length === 5 ? fromHex(4) : 1;
}
else
{
const fromHex = (c)=> clamp(parseInt(hex.slice(c,c+2),16)/255);
this.r = fromHex(1);
this.g = fromHex(3);
this.b = fromHex(5);
this.a = hex.length === 9 ? fromHex(7) : 1;
}
ASSERT_COLOR_VALID(this);
return this;
}
/** Returns this color expressed as 32 bit RGBA value
* @return {number} */
rgbaInt()
{
const r = clamp(this.r)*255|0;
const g = clamp(this.g)*255<<8;
const b = clamp(this.b)*255<<16;
const a = clamp(this.a)*255<<24;
return r + g + b + a;
}
/** Checks if this is a valid color
* @return {boolean} */
isValid()
{ return isNumber(this.r) && isNumber(this.g) && isNumber(this.b) && isNumber(this.a); }
}
///////////////////////////////////////////////////////////////////////////////
// Default Colors
/** Color - White #ffffff
* @type {Color}
* @memberof Utilities */
const WHITE = debugProtectConstant(rgb());
/** Color - Clear White #757474ff with 0 alpha
* @type {Color}
* @memberof Utilities */
const CLEAR_WHITE = debugProtectConstant(rgb(1,1,1,0));
/** Color - Black #000000
* @type {Color}
* @memberof Utilities */
const BLACK = debugProtectConstant(rgb(0,0,0));
/** Color - Clear Black #000000 with 0 alpha
* @type {Color}
* @memberof Utilities */
const CLEAR_BLACK = debugProtectConstant(rgb(0,0,0,0));
/** Color - Gray #808080
* @type {Color}
* @memberof Utilities */
const GRAY = debugProtectConstant(rgb(.5,.5,.5));
/** Color - Red #ff0000
* @type {Color}
* @memberof Utilities */
const RED = debugProtectConstant(rgb(1,0,0));
/** Color - Orange #ff8000
* @type {Color}
* @memberof Utilities */
const ORANGE = debugProtectConstant(rgb(1,.5,0));
/** Color - Yellow #ffff00
* @type {Color}
* @memberof Utilities */
const YELLOW = debugProtectConstant(rgb(1,1,0));
/** Color - Green #00ff00
* @type {Color}
* @memberof Utilities */
const GREEN = debugProtectConstant(rgb(0,1,0));
/** Color - Cyan #00ffff
* @type {Color}
* @memberof Utilities */
const CYAN = debugProtectConstant(rgb(0,1,1));
/** Color - Blue #0000ff
* @type {Color}
* @memberof Utilities */
const BLUE = debugProtectConstant(rgb(0,0,1));
/** Color - Purple #8000ff
* @type {Color}
* @memberof Utilities */
const PURPLE = debugProtectConstant(rgb(.5,0,1));
/** Color - Magenta #ff00ff
* @type {Color}
* @memberof Utilities */
const MAGENTA = debugProtectConstant(rgb(1,0,1));
///////////////////////////////////////////////////////////////////////////////
/**
* Timer object tracks how long has passed since it was set
* @memberof Engine
* @example
* let a = new Timer; // creates a timer that is not set
* a.set(3); // sets the timer to 3 seconds
*
* let b = new Timer(1); // creates a timer with 1 second left
* b.unset(); // unset the timer
*/
class Timer
{
/** Create a timer object set time passed in
* @param {number} [timeLeft] - How much time left before the timer
* @param {boolean} [useRealTime] - Should the timer keep running even when the game is paused? (useful for UI) */
constructor(timeLeft, useRealTime=false)
{
ASSERT(timeLeft === undefined || isNumber(timeLeft), 'Constructed Timer is invalid.', timeLeft);
this.useRealTime = useRealTime;
const globalTime = this.getGlobalTime();
this.time = timeLeft === undefined ? undefined : globalTime + timeLeft;
this.setTime = timeLeft;
}
/** Set the timer with seconds passed in
* @param {number} [timeLeft] - How much time left before the timer is elapsed in seconds */
set(timeLeft=0)
{
ASSERT(isNumber(timeLeft), 'Timer is invalid.', timeLeft);
const globalTime = this.getGlobalTime();
this.time = globalTime + timeLeft;
this.setTime = timeLeft;
}
/** Set if the timer should keep running even when the game is paused
* @param {boolean} [useRealTime] */
setUseRealTime(useRealTime=true)
{
ASSERT(!this.isSet(), 'Cannot change global time setting while timer is set.');
this.useRealTime = useRealTime;
}
/** Unset the timer */
unset() { this.time = undefined; }
/** Returns true if set
* @return {boolean} */
isSet() { return this.time !== undefined; }
/** Returns true if set and has not elapsed
* @return {boolean} */
active() { return this.getGlobalTime() < this.time; }
/** Returns true if set and elapsed
* @return {boolean} */
elapsed() { return this.getGlobalTime() >= this.time; }
/** Get how long since elapsed, returns 0 if not set (returns negative if currently active)
* @return {number} */
get() { return this.isSet()? this.getGlobalTime() - this.time : 0; }
/** Get percentage elapsed based on time it was set to, returns 0 if not set
* @return {number} */
getPercent() { return this.isSet()? 1-percent(this.time - this.getGlobalTime(), 0, this.setTime) : 0; }
/** Get the time this timer was set to, returns 0 if not set
* @return {number} */
getSetTime() { return this.isSet() ? this.setTime : 0; }
/** Get the current global time this timer is based on
* @return {number} */
getGlobalTime() { return this.useRealTime ? timeReal : time; }
/** Returns this timer expressed as a string
* @return {string} */
toString() { return this.isSet() ? abs(this.get()) + ' seconds ' + (this.get()<0 ? 'before' : 'after' ) : 'unset'; }
/** Get how long since elapsed, returns 0 if not set (returns negative if currently active)
* @return {number} */
valueOf() { return this.get(); }
}